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ABSTRACT 
The Segment Anything Model’s (SAM) potential for medical 
image segmentation, crucial for improved healthcare, necessitates 
bridging the gap between its 2D architecture and 3D medical data 
complexities. This review analyses fine-tuning approaches, 
highlighting full fine-tuning and Parameter-Efficient Fine-Tuning 
(PEFT) with MedSAM as a benchmark. However, a hybrid PEFT 
and framework modification approach is suggested for 
practicality. Automatic prompting methods like EviPrompt show 
promise for future scalability. Medical imaging modality 
significantly impacts SAM, with well-defined structures (X-ray, 
MRI, CT) as a good starting point. Tailored approaches are 
needed for domains with greater complexity. This review 
emphasizes the need for further research on hybrid fine-tuning, 
automatic prompting, and domain-specific strategies to unlock 
SAM's full potential in medical image segmentation and advance 
healthcare. 
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1 INTRODUCTION & MOTIVATION 
Medical image segmentation plays a pivotal role in modern 
healthcare, enabling accurate diagnosis, treatment planning, and 
disease monitoring [33]. However, traditional segmentation 
methods, while established, can be time-consuming and prone to 
human error [21]. 

Deep learning offers a promising alternative, as it can be 
trained directly from data to achieve complex and accurate 
segmentation, reducing manual intervention. The Segment 
Anything Model (SAM), a recent image segmentation model from 
2023, produced by Meta AI [25], demonstrates impressive object 
segmentation capabilities, even without specific object-based 
training. However, it was designed for natural images and requires 
adaptation for the specific challenges of medical images, which is 
introduced due to inherent image differences like 3D data and 
noise levels. 

This review focuses on recent advancements in "fine-tuning" 
SAM for medical image segmentation. Fine-tuning leverages a 

pre-trained model's knowledge (like SAM's) and adapts it to a 
new domain by modifying specific parts of its architecture or 
training process [13]. This holds immense potential for improving 
SAM's effectiveness in medical image segmentation, a domain 
with diverse image characteristics. 

We aim to critically analyse existing research on different 
fine-tuning strategies for SAM in medical image segmentation, 
like those used in pioneering works such as MedSAM [33] and 
AdaptiveSAM [34], alongside more recent advancements like 
ProMISe [28]. By exploring the advantages and limitations of 
these approaches, we aim to inform the development of our 
project, SAMSeg. This review will bridge the gap in our current 
knowledge and lay the foundation for further research in this 
domain. 

2 DEEP LEARNING FOR MEDICAL IMAGE 
 SEGMENTATION: PRE-SAM 

This section explores earlier established image segmentation 
approaches and their role in medicine before the emergence of 
SAM. 

While deep learning has become the dominant force in 
medical image segmentation, it is valuable to understand prior 
methods that laid the foundation which it builds upon. While 
classical techniques, such as thresholding, offered computational 
efficiency, their performance suffered due to noise and complex 
shapes [22]. Similarly, machine learning approaches, such as 
clustering-based algorithms, provided a foundation for later 
advancements, but were limited in handling intricate image 
features [15]. 

Deep learning architectures, often consisting of an encoder-
decoder structure with millions of parameters, have revolutionised 
image segmentation due to their ability to learn complex 
relationships within image data. This has led to remarkable 
performance in various tasks, including surgical scene 
segmentation [34]. However, deep learning techniques can be 
inherently domain-specific, requiring vast amounts of labelled 
medical data, which can be scarce due to privacy concerns and 
annotation complexity. In addition, their complexity can lead to 
overfitting and challenges in handling inherent variability in 
medical images. 
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Despite these limitations, deep learning remains a powerful 
tool for medical image segmentation. By acknowledging these 
challenges and employing appropriate strategies like data 
augmentation and transfer learning, researchers are continuously 
working to improve the generalisability and robustness of deep 
learning models in this domain. 

2.1 U-Net 
Introduced in 2015 by Ronneberger et al. [36], U-Net is a widely 
used Convolutional Neural Network (CNN) architecture designed 
for biomedical image segmentation. Its U-shaped structure 
consists of two main paths: a contracting path that captures the 
context of the input image, and a symmetrically expanding path 
for precise pixel localisation within the input image. This allows 
for accurate segmentation of complex shapes with less training 
data compared to previous state-of-the-art methods. 

Despite its success, U-Net has limitations. Studies report 
struggles with class imbalances in medical image datasets, where 
some classes (e.g., rare diseases) have far fewer pixels compared 
to others (e.g., background) [34]. In addition, U-Net's 
generalisability on unseen datasets can be limited, requiring 
significant retraining for new applications [33]. 

Despite these drawbacks, U-Net remains a widely used and 
influential architecture in medical image segmentation.  
Researchers often use it as a baseline model for comparison with 
newer approaches. This has led to the development of an 
abundance of U-Net variations in the medical realm, such as nnU-
Net. 

2.1.1 nnU-Net. Building upon U-Net [36] and addressing its 
limitations, nnU-Net, produced by Isensee et al. [21], offers a 
robust and self-adapting framework for both 2D and 3D medical 
image segmentation. It incorporates features like leaky ReLU 
activation and strided convolutions for downsampling, alongside 
extensive data augmentation strategies. Notably, it can 
automatically configure itself for different tasks, eliminating the 
need for extensive architecture design. This, combined with 
automated pre-processing and post-processing pipelines, 
significantly contributed to its success. 

nnU-Net achieved remarkable results in numerous medical 
image segmentation challenges, ranking first in accuracy in the 
2018 Medical Decathlon Challenge [3]. This established nnU-Net 
as a new state-of-the-art method and foundational framework for 
further advancements in medical image segmentation. 

2.2 Transformer-Based:  
  Visual Transformers (ViTs) 

Before 2021, medical image segmentation relied heavily on 
Convolutional Neural Network (CNN) architectures. On the other 
hand, transformer-based architectures were primarily only used in 
natural language processing. However, in 2021, Dosovitskiy et al. 
[12] introduced Visual Transformers (ViTs), a pure transformer-
based architecture that achieved impressive performance on image 
segmentation tasks, even outperforming state-of-the-art CNNs, 
particularly when pre-trained on very large datasets. 

ViTs offer advantages over CNNs, including lower 
computational cost, which can be crucial when dealing with large 
medical image datasets. In addition, they have weaker inductive 
image biases, i.e. they make significantly fewer image-structure 
assumptions, making them adaptable to diverse medical image 
characteristics. They achieve high accuracy even with large 
datasets due to their core component, the Transformer encoder, 
which leverages both linear and positional embeddings to capture 
both local and global image features. 

While ViTs offer advantages, they are a relatively new 
approach in medical image segmentation. This means established 
best practices for medical image segmentation tasks might still be 
under development for ViT architectures. In addition, for highly 
complex segmentation tasks, ViTs might require more training 
data compared to CNNs. 

ViT has various sizes, specifically the ViT-Base (with 12 
transformational layers and 91 million parameters), the VIT-
Large, and the VIT-Huge (with 32 transformational layers and 
636 million parameters). While ViT-Base is the most common, 
the larger models offer increased capacity but require significantly 
more training data. 

The introduction of ViTs opened doors for exploring 
Transformer-based architectures in medical image segmentation, 
leading to improved performance and broader applicability. 

3 CURRENT ERA: THE SAM REVOLUTION 
On April 5, 2023, Meta AI introduced the Segment Anything 
Model (SAM) [25]. SAM gained significant attention for its 
ability to generate accurate object segmentations through both 
automation and user interaction. This research marked a shift 
towards prompt-driven models, opening doors to explore 
previously unknown capabilities in image segmentation. 

However, SAM was designed for natural images. While 
researchers are exploring its potential in various domains beyond 
its original training data, limitations emerge in specific use cases. 
For instance, studies on camouflaged object detection [39] 
showed promise for natural objects like spiders but struggle with 
more complex camouflage. Similarly, investigations in agriculture 
[23] revealed success in pest and disease monitoring, but 
limitations in whole-pest detection and crop segmentation, likely 
due to inherent biases in the training data. Likewise, studies in 
manufacturing [23] suggest its effectiveness for prominent 
anomalies but highlight the need for expert guidance for subtle 
defect detection. Finally, research on building and road extraction 
[23] indicates proficiency with regular-shaped buildings but 
challenges with smaller structures and diverse road characteristics. 
These use cases highlight both the promise and limitations of 
SAM, particularly when applied to domains with significant 
visual differences from its training data. This is where fine-tuning 
SAM for medical image segmentation becomes crucial. 

This section delves deeper into SAM's inner workings, 
exploring its transformer-based architecture and the key 
advantages that make it suitable for medical image segmentation 
tasks. 



Unlocking SAM’s Potential in Medicine UCT’25, March 2024, Cape Town, Western Cape, South Africa 
 

3.1 A Powerful Transformer-Based Model 
Specifically, SAM is a powerful transformer-based model, with an 
architecture that consists of three main components: an image 
encoder, a prompt encoder, and a mask decoder. 

The image encoder processes the input image into a high-
dimensional image embedding space. It utilises a standard Vision 
Transformer [12] pre-trained with the Masked Auto-Encoder 
(MAE) training scheme [16]. The ViT efficiently captures and 
extracts essential features and relationships within the image. As 
mentioned in Section 2, Meta AI provides three different pre-
trained SAM models corresponding to the three ViT sizes. 
However, their research suggests that using larger ViT models as 
the backbone of SAM’s image encoder offered only marginal 
improvements in accuracy, whilst resulting in significantly higher 
computational demands [25]. 

SAM’s prompt encoder translates user prompts into 
internal representations that the model can understand. These 
prompts can be in the form of a point (positive or negative, to 
indicate the foreground and background of the target 
respectively), a bounding box (to surround the spatial region of 
the target object), or even textual descriptions. SAM also offers a 
special ‘Everything’ mode, where the model segments all 
potential objects in the entire image. 

The mask decoder iteratively combines the image 
embeddings from the image encoder and the prompt embeddings 
from the prompt encoder to segmentation masks, reflecting both 
the input image’s visual features and the user’s specified target 
through the prompt. It is designed as a modified Transformer-
decoder block, utilising techniques such as prompt self-attention, 
which allows the prompt embeddings to interact and refine their 
representations, and cross-attention in two directions, which 
facilitates information exchange between the image embedding 
and the prompt embeddings. For ambiguous prompts, the decoder 
can produce multiple ranked output masks, allowing SAM to 
prioritise the most likely segmentation result. 

3.2 Training Data and Target Domain 
SAM was trained on a massive dataset, called SA-1B, which 
contained over 11 million 2D natural images consisting of over 1 
billion masks. This carefully curated dataset encompasses a wide 
variety of natural objects and scenes, providing a broad 
understanding of visual concepts. It is important to note that the 
dataset only includes natural images, such as everyday objects 
(cars, animals, etc.), where annotated image-mask pairs are 
readily available. 

3.3 Advantages of SAM 
Several advantages of SAM make it suitable for various image 
segmentation tasks, including those in the medical domain. 

As discussed, SAM leverages several prompting methods. 
This offers flexibility in the segmentation process, allowing users 
to leverage different prompts to direct SAM to specific structures. 
This is crucial for adapting SAM to the diverse and complex 
imagery in medical domains. 

More significantly, a key strength of SAM is its capability to 
perform zero-shot learning. This means that it has the potential 
to segment unseen medical structures without extensive retraining. 
By providing high-quality prompts, SAM can be instructed on 
entirely new segmentation tasks, reducing the burden of data-
specific training commonly required for medical image analysis 
models. This significantly reduces the need for data-specific 
training for medical tasks, although fine-tuning can still improve 
performance for highly complex medical images. 

4 RECENT ADVANCEMENTS: 
 APPLYING SAM TO MEDICAL IMAGES 

While SAM shows promise, its application to medical image 
segmentation faces challenges due to inherent differences from 
natural images [11, 18, 33]. Fortunately, several efforts have 
successfully adapted SAM for this domain, achieving 
performance improvements (as seen in Figure 1). 

 
Figure 1: A brief chronology of SAM and its variants for 

Medical Image Segmentation (2023-2024) [50]. 

This section explores three key areas crucial for this 
adaptation: fine-tuning approaches, prompting methods, and 
dataset considerations. 

4.1 Fine-Tuning Methods 
Some research has found that fine-tuning strategies are most 
effective in improving SAM for medical image segmentation [33, 
43], in comparison to training an entirely new SAM from scratch, 
due to the model’s already-perfected weight initialisations. 

4.1.1. Full Fine-Tuning. The most straightforward approach 
involves fine-tuning all of SAM's components (image encoder, 
prompt encoder, and mask decoder) on a medical dataset. This 
leverages SAM's pre-trained weights as a starting point, allowing 
the model to adapt to the new domain. 

SkinSAM, by Hu et al [19], used this approach for skin 
cancer segmentation. Their model demonstrated substantial 
improvement from 81.25% to 88.79% Dice scores, with the 
highest performance on vascular lesions. Similarly, an approach 
by Li et al. [30], Polyp-SAM, fully fine-tuned SAM for polyp 
segmentation, resulting in outstanding results with Dice scores 
consistently above 88% for several datasets. 

Slightly different, MedSAM, by Ma et al. [33], fully fine-
tuned SAM’s image encoder and mask decoder, whilst leaving the 
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prompt encoder frozen, with SAM’s original initialised weights. 
This allows MedSAM to learn how to fuse medical prompts and 
image embeddings correctly. This model outperformed SAM by a 
large margin on medical image segmentation tasks, even 
exceeding the performance of traditional specialist models. The 
features of MedSAM’s segmentations contain more semantic 
information than their U-Net [36] baseline model, even on 
challenging target objects. Specifically, it achieved Dice scores of 
94%, 94.4%, 81.5%, and 98.4% for the segmentation tasks 
involving intracranial haemorrhage CT, glioma MRI, 
pneumothorax CXR, and polyp-endoscopy images respectively, 
demonstrating MedSAM’s ability to learn complex anatomical 
structures and strong generalisability. 

As shown through these existing attempts, a full fine-tuning 
approach of SAM for medical image segmentation can achieve 
high Dice scores. However, its drawback is that it requires 
significant training time and is computationally expensive.  

4.1.2 Parameter-Efficient Fine-Tuning (PEFT). PEFT 
addresses the drawbacks of full fine-tuning by fine-tuning only a 
subset of SAM's parameters, striking a balance between 
leveraging pre-trained knowledge and adapting to medical images. 

Med-SA, by Wu et al. [43], and SAMed, by Zhang and Liu 
[46], both added Low-Rank Adaption (LoRA) modules to SAM’s 
image and prompt encoders, whilst keeping SAM’s original pre-
trained weights frozen. Both models achieved Dice scores above 
80% across several datasets, outperforming both previous state-of-
the-art methods and MedSAM, while fine-tuning less of SAM’s 
parameters. 

However, Paranjape et al. [34] argue that the approach used 
by both Med-SA [43] and SAMed [46] can be memory-intensive 
due to the additional adapter layers added to every transformer 
block, increasing computational overhead, alongside the many 
gradient computations required for these parameters. 

Instead, for AdaptiveSAM, Paranjape et al. [34] proposed 
taking advantage of SAM’s already-proven capability to capture 
distinctive features in the initial layers of the network by freezing 
the image encoder and prompt encoder. Then, they performed a 
simple yet efficient method for fine-tuning, called Bias-Tuning, 
where they essentially only modified the biases of the encoders. 
Since SAM is already trained with one billion masks, it can 
already inherently segment general objects with its weight 
matrices. So, they simply added a trainable shift parameter to the 
outputs of each transformational layer. Only these shift 
parameters were trainable, as all other weights and biases were 
frozen, resulting in the model more easily learning the intricacies 
of medical images. Their findings showed that AdaptiveSAM 
outperforms state-of-the-art image segmentation methods on the 
following: surgical datasets (focused on medical instruments in 
robotic surgeries), abdominal ultrasounds, and chest x-rays. 
However, careful consideration of data imbalance issues was 
needed, as AdaptiveSAM’s performance deteriorated massively 
when data was imbalanced. 
As shown through these models, PEFT approaches require 
significantly less training time and computational resources, as 
compared to full fine-tuning. However, it may need additional 

strategies for limited data, due to the fewer parameters being 
specifically tuned for the data. 

4.1.3 Framework Modification. This approach either refines 
SAM’s architecture or integrates SAM with existing frameworks 
for optimal performance for medical image segmentation. 

For example, Li et al. [31] introduced nnSAM, an 
integration of SAM as a plug-and-play module with nnU-Net [21], 
previously mentioned in Section 2. nnSAM achieved more 
accurate medical image segmentation in comparison to both raw 
SAM and raw nnU-Net models. In other words, nnSAM leveraged 
the strengths of both models. 

Subsequently, an approach by Lin et al. [32] is SAMUS, 
which introduces a parallel CNN branch that injects local features 
into SAM's image encoder for enriched feature representation. 
Notably, SAMUS is designed for adapting SAM to small-size 
inputs, making it potentially more suitable for healthcare 
deployments. Evaluations demonstrated that SAMUS outperforms 
both MedSAM [33] and Med-SA [43] across various modalities, 
while significantly reducing computational cost. 

Through these framework modification efforts to adapt 
SAM to the medical domain, one can deduce that these models 
either aim to improve performance (nnSAM [31]) or reduce 
computational resources (SAMUS [32]). However, a disadvantage 
is that it may introduce additional complexity. 

4.1.4 Efficient Annotation Learning Facilitation. Due to the 
high cost of medical image annotation, some methods have 
explored how SAM can be utilised for efficient learning with 
limited labelled data. 

To produce reliable pseudo-labels, Li et al. [29] leveraged 
SAM to conduct model predictions consistent with generated 
confidence-based pseudo-labels. They then worked with a subset 
with the highest confidence to further boost the existing semi-
supervised segmentation model. Their evaluations achieved 
between 6.84% and 10.76% improvement, using a dataset with 
only 5% of labelled data. 

However, instead of generating pseudo labels, Zhang et al. 
[47] introduced a semi-supervised framework called SemiSAM, 
that leverages a pre-trained segmentation model with domain 
knowledge to guide SAM. In other words, this is a form of 
transfer learning, where the pre-trained segmentation model acts 
as a teacher for SAM. Their evaluation on a dataset of heart MRIs 
demonstrated that SemiSAM achieves significant improvements, 
particularly when labelled data is extremely limited. 

These annotation facilitation approaches reduce the need for 
extensive labelled data by leveraging pre-trained knowledge. 
However, this is a relatively new attempt in the medical SAM 
community with minimal data, so further research and 
experimentation are needed. 

4.2 Prompting Methods 
While fine-tuning strategies improve SAM for medical images, 
high-quality prompts are crucial for accurate segmentation. 
However, creating them can be challenging due to noisy 
annotations and the need for medical expertise. 
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Prompting methods offer a promising approach to improve 
the performance and practicality of SAM for medical image 
segmentation tasks. By automating prompt generation, reducing 
reliance on expert input, and integrating uncertainty estimation, 
researchers are paving the way for more robust and reliable 
medical image segmentation with SAM. While this literature 
review excludes natural language processing in the form of text 
prompting, this section explores various prompting methods that 
attempt to enhance SAM's capabilities in medical image 
segmentation. 

4.2.1 Manual Prompting Methods. Most fine-tuning 
approaches utilised bounding boxes or points as prompts. 
However, while effective, they require manual intervention for 
each image, hindering their real-world practicality due to the 
bottleneck created by required medical expertise [34]. 

Ma et al. [33] report that with the point-based prompting 
method, segmentations can suffer from ambiguity and often 
require several human interventions to correctly segment the 
target object. Conversely, SAM’s fully automated Everything 
prompting mode, while not requiring human intervention, may not 
provide enough focus, often producing segmentations that lack 
practical utility. This is because medical professionals tend to only 
work with a specific region-of-interest in a medical image, such as 
a particular organ. 

Ultimately, for manual prompting methods, Ma et al. [33] 
argue that the bounding box prompting method is the best as it can 
specify the target object with the minimum amount of human 
intervention, whilst reducing ambiguity. However, they 
acknowledge that their model, MedSAM, experienced poor 
performance in segmenting vessel-like branches, such as arteries 
and veins, because the bounding box can have a high level of 
ambiguity in this context. This is due to when enclosing the entire 
complex structure in the box, other irrelevant regions-of-interest 
are often captured simply due to the nature of the target object’s 
shape. 

Therefore, the effectiveness of using SAM’s manual 
prompting methods can be observed. However, it is hindered by 
its impracticality of requiring user input for each image and its 
inherent ambiguity from human error. 

4.2.2 Automatic Prompt Generation. To address these 
challenges, research has explored automatic prompt generation 
methods that establish a feedback loop between the fine-tuned 
SAM and the prompt generator, leading to more reliable 
segmentation outcomes by mitigating the fluctuations in SAM’s 
performance based on prompts [13].  

For example, Lei et al. [26] employed a few-shot 
localisation process for their MedLSAM model. This was used 
to identify volumetric bounding boxes for anatomical structures in 
3D medical images, using the assumption that locally similar pixel 
distributions correspond to the same region-of-interest. It then 
derived 2D boxes for each slice to guide SAM in automatically 
segmenting the target anatomy. However, MedLSAM achieved 
comparable performance to SAM, with minimal improvements in 
the case of head and neck organs. 

Alternatively, Anand et al. [2] proposed a one-shot 
localisation process with a segmentation framework, guided 
together by a singular template image that was used to prompt 
SAM. This method utilised pre-trained ViT-based foundation 
models to extract dense features from the template image, 
achieving Dice scores between 62-90% across various modalities, 
using just one image as a reference point. 

4.2.2.1 Integrating Uncertainty. Integrating uncertainty 
estimation of the generated prompts further enhances SAM’s 
prompt robustness. It helps to identify potential segmentation 
inaccuracies, ultimately improving reliability and aiding medical 
professionals in real-world applications. 

For instance, Xu et al. introduced EviPrompt [26], a training-
free prompt-generation method based on uncertainty estimation 
that does not need expert interaction or training. It only requires a 
single medical image-annotation pair as a reference. Their 
experiments found that an EviPrompt-trained MedSAM 
outperformed the standard MedSAM model [33]. 

Similarly, Zhang et al. introduced the Uncertainty Rectified 
SAM (UR-SAM) framework [48], which aimed to enhance the 
robustness and reliability of auto-prompting medical image 
segmentation by estimating uncertainty maps. In other words, 
their framework utilises the uncertainty of a prompt to rectify the 
possible error, improving the final segmentation result. Their 
experiments on two 3D medical datasets demonstrated that using 
the UR-SAM framework can improve performance with up to 
10.7% and 13.8% in Dice scores. 

While automatic prompt generation addresses the challenges 
of manual prompting, models that utilise it have been observed to 
underperform, such as MedLSAM [26]. However, improved 
performance and reliability can be gained from the integration of 
uncertainty estimation, through employing certain frameworks, 
such as EviPrompt [44] or UR-SAM [48]. 

4.3 Learnable Prompts 
An alternative approach to automatic prompt generation involves 
learnable prompts, where a separate component is trained to 
generate them, eliminating the need for any pre-defined prompts.  

For example, for AutoSAM, Shaharabany et al. [38] used a 
separate, trainable CNN-based head that extracts features from the 
input image to create conditional prompts, while keeping the 
image encoder’s weights frozen. What makes their model “auto” 
is that it involves training this external prompt encoder to generate 
“surrogate prompts” without any further fine-tuning of SAM, 
allowing the model to go beyond typical prompts in a fully auto-
prompted manner. It demonstrated state-of-the-art results across 
various medical benchmarks. 

Similarly, an approach for Cui et al.’s All-in-SAM [10] was 
to utilise SAM as a foundational model to generate pixel-level 
annotations from weak prompts, such as bounding boxes. This 
allowed the model to not require high-quality manual prompts and 
was able to achieve competitive performance in nuclei 
segmentation in comparison to state-of-the-art methods while 
reducing the annotation time. 
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These learnable prompt methods eliminate the need for high-
quality prompts by training a separate component to generate 
them, achieving state-of-the-art performance, such as with 
AutoSAM [38] and All-in-SAM [10]. However, it does introduce 
additional complexity through the addition of this external 
trainable component. 

4.3 Dataset Curation: 
  Across Diverse Medical Modalities 

The success of fine-tuning SAM for medical image segmentation 
hinges heavily on the quality and diversity of the curated dataset 
that the model is trained on. SAM's pre-training on inherent 2D 
architectures can lead to suboptimal results when directly applied 
to 3D medical image segmentation. 

4.3.1 2D vs. 3D Medical Images. In deciding between 
catering for 2D versus 3D medical images, Ma et al. [33] 
(MedSAM) argue practically: to focus on 2D data, as 3D images 
can be processed as a series of 2D slices.  

However, as argued by Zhang et al. [49], this method 
discards important depth-related spatial context. This is extremely 
important for the identification of certain volumetric medical 
objects in real-world applications, such as accurately quantifying 
the volume of tumours. 

Bui et al.’s SAM3D [6] takes a different approach to 2D 
slice segmentation. They process each 2D slice individually using 
SAM, generating slice embeddings. Then, they utilise a 
specialised, lightweight 3D decoder to produce the final 
segmentation result, ensuring minimal loss of depth information. 
However, this requires careful design to ensure that the dataset 
used is compatible with the 3D decoder. 

Ultimately, the choice between 2D and 3D data curation for 
SAM-based medical image segmentation depends on the 
application’s specific needs for detail and efficiency. While 2D 
approaches benefit from leveraging the existing infrastructure of 
SAM, 3D methods offer a more comprehensive understanding of 
spatial relationships within medical images. 

4.3.2 Adapting SAM to 3D Images. For 3D medical images, 
several methods have been proposed to bridge the gap between 
SAM’s 2D architecture and the complexities of 3D data. 

Firstly, Wu et al. [43] (Med-SA) proposed a technique 
called Space-Depth Transpose (SD-Trans), where a bifurcated 
attention mechanism is employed. One branch captures spatial 
correlations, while the other focuses on depth correlations. In 
other words, Med-SA adapted 2D SAM to 3D medical images by 
transposing spatial depth by adding self-attention blocks. 

Both 3DSAM-Adapter, by Gong et al. [14], and Modality-
Agnostic SAM (MA-SAM), by Chen et al. [7], utilised 3D 
adaptors within each ViT [12] block of SAM’s image encoder. 
These 3D adapters were fine-tuned alongside SAM’s mask 
decoder, providing them with the capability of handling both 2D 
and 3D volumetric data. 3DSAM-Adapter achieved significant 
outperformance over nnU-Net [21] on tumour datasets, while 
MA-SAM consistently surpassed both 3DSAM-Adapter and nnU-
Net, even when using SAM's Everything prompting mode. 

Finally, Li et al. [28] proposed the Prompt-driven 3D 
Medical Image Segmentation model (ProMISe), which 
integrates lightweight adaptors to extract depth information 
without modifying SAM’s pre-trained weights. Through their 
evaluations, ProMISe showed superior performance in 
comparison with state-of-the-art methods, particularly in colon 
and pancreas tumour segmentation datasets. 

4.3.3 Medical Image Diversity. The sheer variety of medical 
image modalities requires diverse datasets for effective fine-
tuning of SAM for medical image segmentation tasks, each 
presenting its own challenges. The following will briefly cover 
some of the significant medical imaging types and their 
challenges. However, in practice, these challenges also vary 
depending on the particular region-of-interest being segmented. 

X-ray images, vital for fracture detection, face difficulties in 
identifying small or faint structures, such as fractures, against 
complex, overlapping anatomical backgrounds, such as ribs. 
Common datasets include ChestX-Ray8 [42], MIMIC-CXR-JPG 
[24] and CheXpert [20]. 

Computed Tomography (CT) scans, providing detailed 
cross-sectional views, often encounter label imbalance issues, 
where there is a large background region, such as a lung, and a 
small target, like a tumour. Certain organs, such as the liver, can 
have large size variations between patients, further affecting 
segmentation accuracy. The Cancer Imaging Archive (TCIA) and 
the Lung Database Consortium (LIDC) [4] are valuable resources 
for CT datasets. 

Magnetic Resonance Imaging (MRI) scans, providing 
detailed images of organs through strong magnetic fields and 
radio waves, can be challenging due to the high precision needed 
when segmenting small structures, like the hippocampus in the 
brain. Organ size variation can also be problematic, especially 
with limited training datasets and high patient variability. Datasets 
like Ischemic Stroke Lesion (ISLES) [17], fastMRI [45], and the 
Brain Tumour Segmentation Challenge (BraTS) [5] are 
commonly used for MRI segmentation research.  

Ultrasound images, utilised for real-time visualisation of 
internal organs through sound waves, often have lower resolution 
and greater noise, making the segmentation of fine-grained 
structures, such as nerves, more challenging. In addition, speckle 
patterns and organ deformations due to probe pressure introduce 
further complexity. Breast Ultrasound Images [1] and Ultrasound 
Nerve Segmentation (UNS) [51] are common ultrasound datasets. 

Positron Emission Tomography (PET) scans, using 
radioactive tracers to measure metabolic activity in tissues, often 
have a lower spatial resolution compared to CTs and MRIs. In 
addition, a PET scan’s signal intensity varies depending on the 
radiopharmaceutical used, introducing challenges for consistent 
segmentation. Due to this, there are not many high-quality PET 
datasets used for medical image segmentation research. 
Endoscopy images, performed using a thin, flexible tube with a 
camera to examine internal organs, present challenges due to 
varying illumination conditions and blurriness caused by camera 
motion. In addition, the presence of various fluids and instruments 
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deteriorates image quality, complicating segmentation. Kvasir 
[35] and EndoScene [41] are commonly used endoscopy datasets. 

Dermoscopy uses a magnified view of the skin to aid in the 
diagnosis of skin cancer. Segmenting skin lesions can be 
challenging due to variations in colour, texture, and shape. A 
commonly used skin lesion dataset is the HAM10000 [40]. 

5 ETHICAL CONSIDERATIONS: 
 AI IN MEDICAL DIAGNOSIS &  
 DECISION-MAKING 

A SAM-based medical image segmentation model, such as 
SAMSeg, promises enhanced healthcare outcomes by aiding in 
diagnosis and decision-making. However, ethical considerations 
demand careful attention throughout development and 
deployment, including rigorous validation, explainability of 
outputs, and open communication [37]. 

SAMSeg's performance could be susceptible to biases 
present from training data. To mitigate this, curating diverse 
datasets and monitoring for bias through standardised fairness 
metrics are essential to minimise bias amplification [8, 9]. 

For example, Ma et al. [33] compared MedSAM’s 
performance with six different human experts in a prostate image 
segmentation task. Their findings showed that MedSAM exceeded 
a third of the experts, whilst performing comparably with the 
others. This highlights the potential for medical image 
segmentation as a real tool in clinical practice. However, SAMSeg 
is envisioned as a tool to augment human capabilities, not replace 
them. Automating tasks like image segmentation can free up 
valuable time for doctors to focus on complex cases that require 
human judgment. 

Guided by the FUTURE-AI principles [27], SAMSeg’s 
development and deployment should prioritise Fairness, 
Universality, Traceability, Usability, Robustness, and 
Explainability. Through this, we can ensure that SAMSeg is a 
force for good, improving healthcare outcomes while minimising 
potential ethical concerns. 

6 DISCUSSION & CRITICAL COMPARISON 
Having explored various approaches for leveraging the Segment 
Anything Model (SAM) in medical image segmentation tasks, this 
section delves into the key findings of this literature review and 
their implications for our project, SAMSeg. 

Firstly, this review confirms SAM’s potential for medical 
image segmentation tasks due to its zero-shot learning and domain 
adaption capabilities [33]. However, the degree of improvement 
may vary depending on the medical domain and fine-tuning 
approach. While SAM is promising, some efforts haven't 
surpassed existing, specialised methods like nnU-Net [21] due to 
their tailored architectures. 
The primary focus of this literature review was to investigate 
successful fine-tuning approaches for SAM in medical image 
segmentation tasks, and for which specific medical image 
modalities were these methods effective. 

Full fine-tuning, while effective and accurate (MedSAM 
[33]), is computationally expensive and time-consuming. 
SAMSeg can benefit from this approach, particularly if high 
accuracy is prioritised, but careful consideration must be given 
based on available computational resources. 

Parameter-Efficient Fine-Tuning (PEFT), used in Med-SA 
[43] and Adaptive SAM [34], offers a balance between leveraging 
pre-trained knowledge and adapting to medical images, requiring 
less training time and resources. However, PEFT might require 
additional strategies for limited data scenarios due to fewer 
tuneable parameters. SAMSeg can leverage PEFT for faster 
training and explore techniques like bias-tuning for data scarcity. 

Modifying SAM’s framework can improve performance 
(nnSAM [31]) or reduce computational costs (SAMUS [32]). 
While potentially beneficial for SAMSeg, it can introduce 
additional complexity. SAMSeg can explore these modifications 
to achieve goals (e.g., performance boost or resource efficiency) 
while carefully considering the introduced complexity. 

Facilitating efficient annotation learning, used by methods 
by Li et al. [29], is a new approach that can be valuable for 
SAMSeg, especially for medical domains with limited labelled 
data. These methods leverage pre-trained knowledge or transfer 
learning to generate pseudo-labels, reducing the need for 
extensive manual annotation. 

In terms of prompting methods, manual prompting, while 
effective, requires user input for each image, hindering 
practicality. SAMSeg should explore automatic prompting 
methods to reduce reliance on manual intervention. However, it 
has been found to underperform, as seen in MedLSAM [26]. 
Integrating uncertainty estimation by using a framework like 
EviPrompt [44] or UR-SAM [48], can enhance reliability, making 
it a promising direction for SAMSeg. 

Alternatively, methods that make use of learnable prompts, 
such as AutoSAM [38], achieve state-of-the-art results but 
introduce additional complexity. SAMSeg should investigate the 
feasibility of this approach, considering the trade-off between 
performance gains and added complexity. 

Finally, in terms of dataset curation, the choice between 2D 
or 3D medical data depends on SAMSeg’s needs. While 2D 
approaches are efficient, 3D methods offer a more comprehensive 
understanding. Therefore, SAMSeg should prioritise 3D data if 
spatial relationships of our chosen medical domain are especially 
crucial. 

This review has presented several methods to bridge the gap 
between SAM’s 2D architecture and 3D data complexities, such 
as those used in Med-SA [43] and 3DSAM-Adapter [14]. 
SAMSeg can benefit from these advancements to effectively 
handle 3D medical images, particularly techniques that don’t 
require significant modification to pre-trained weights, such as 
ProMISe [28]. 

In terms of the vast array of medical imaging modalities, 
careful consideration of the specific challenges associated with 
each one should be prioritised when curating our dataset for 
SAMSeg, such as noise in ultrasounds, varying illumination in 
endoscopy, and many more. 
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By carefully considering the advantages and disadvantages 
of these approaches, we can select the most suitable fine-tuning 
strategies, prompting methods, and dataset considerations for 
developing a robust and effective SAMSeg model. 

7 CONCLUSIONS 
This review investigated how the Segment Anything Model 
(SAM) can be leveraged for medical image segmentation. SAM's 
zero-shot learning and domain adaptation capabilities offer 
promise, albeit with effectiveness contingent on fine-tuning 
methods and medical domains. 

Our findings highlight the success of fine-tuning approaches, 
especially full fine-tuning and Parameter-Efficient Fine-Tuning 
(PEFT) methods. MedSAM [33], a benchmark in the field, 
achieves state-of-the-art performance across diverse medical 
image datasets. However, its full fine-tuning approach may pose 
computational challenges. 

For SAMSeg’s development, a hybridised fine-tuning 
approach is recommended, combining the efficiency of PEFT [13, 
34, 43, 46] with targeted modifications to the SAM framework for 
medical image segmentation, specifically integrating with a nnU-
Net model [21], as seen in nnSAM [31]. We also suggest using 
MedSAM [33] as a benchmark for achieving high accuracy 
segmentations, while considering our computational constraints. 

In terms of SAMSeg’s prompting method, focusing on 
manual prompting with bounding boxes is a good starting point 
due to its simplicity for tasks requiring specific region-of-interest 
segmentation [33]. However, despite its effectiveness, it is 
impractical in real-world applications due to needing user input on 
every image. Therefore, SAMSeg should consider exploring 
automatic prompt generation techniques, such as EviPrompt [44] 
or UR-SAM [48], reducing manual effort for long-term 
development. 

Regarding data dimensionality, the choice between 2D or 
3D data hinges on SAMSeg's prioritisation. If spatial relationships 
are crucial, 3D data is preferred. However, for an initial 
development phase, we recommend focusing on 2D data due to 
efficiency. As SAMSeg progresses, incorporating techniques from 
methods like 3DSAM-Adapter [14] can enable the effective 
handling of 3D medical images. 

Similarly, the chosen medical imaging modality should 
consider the unique challenges associated with each type. During 
SAMSeg’s dataset curation, we recommend starting with 
modalities that have clear and consistent characteristics, such as 
dermoscopy or CT scans. Success with these can pave the way for 
handling more complex modalities like endoscopy and 
ultrasounds. 

In conclusion, future research should focus on hybrid fine-
tuning and automatic prompt generation to further enhance SAM's 
capabilities across diverse domains, while acknowledging the 
need for tailored approaches for domains with greater complexity. 
By implementing these conclusions, developing our robust and 
efficient SAMSeg model is possible, unlocking the full potential 
of SAM for medical image segmentation tasks. 
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